Effects in computer graphics

Effects in Computer Graphics
Contents

1. Introduction

2. 80-90’s effects

3. Modern effects

4. Conclusion
5. Reference links

Introduction
It’s difficult to talk about our life without computers. Computer has become an intelligent machine that helps us with all types of work. Also, it’s a thing for self-realization. Now we can exclude a new type of art – which is made on computer. If your creation is a game, presentation or just a demonstration of what you can do on a computer, you need to make it look great. In computer graphics, there are many popular effects that make your picture look better or just attract people’s attention because it’s funny. I want to tell you about some of them. So, let’s begin.
80-90’s effects
In the 80-90’s the level of computer graphics processing units was too low to make a great graphics and run it at good speed. Computer displays had only 16-256 colors, and it wasn’t enough to make good pictures. To make graphics run faster, programmers put the main pressure to math processors. Graphic chipset only displayed what the central processor said. At that time many computer professionals or just hackers started making demo compos – events where some teams made their own program, called demo, and showed what they could do in programming, computer graphics, computer music and other skills. Demos had some nice retro-looking effects, team advertising text, and a computer-made music. In the 80’s it looked amazing, because personal computers only started entering our life.
One of the most popular effect in old demo-s was “Plasma”.

It looks like an organic material, moving in time, made with some bright colors. This effect is sometimes the first computer graphics effect for a beginner in making games, demos, etc.
It’s not difficult to make it work in a modern programming language, but it has a difficult math base in it. The simplest plasma works in the following algorithm: the color of each pixel on the screen is a sum of sine functions from math, when each of them has an argument of a pixel’s position. This is often multiplied to a noise-function for color.

Plasma is one of the most famous and most used effects.
You can see a plasma effect written by myself on CG programming language below (a big image) And some plasma from the 3rd side (small).

[image: image22.png]S nodet

rachtuagen

KaBine

1 oo 3

Linkaruiet
Refhteruiet
Ranhanger

< —

Add_element

bovenkant (28 points)
tonkaratet 2 ihkerutat>
tinkeruial Shinkeruials
refhteruiet SRachtarwiel
Fechteruisl SRechtarwiet
Snaerstel® (s points)
Sehierbumper ¢18"points)

Copy

< —

Bemove model

Eait
Renove

float4 main_ps(float2 iTexCoord : TEXCOORD0, uniform float time) : COLOR

{

float xc = 25+iTexCoord.x*10;

float yc = 25+iTexCoord.y*10;

float t = time/10;

float c1 = sin(t*0.61655617);

float c2 = sin(t*-0.6352262);

float s1 = 0.5+0.5*sin(xc*c1);

float s2 = 0.5+0.5*sin(yc*c2);

float s3 = 0.5+0.5*sin((xc+yc+t)/2);

float c = (s1+s2+s3)/3;

float4 color1=tex2D(pat,float2(c+time/10,0.5));

return color1;

}

[image: image2.jpg]

[image: image3.png]

[image: image4.png]> - -
> - -

[image: image5.png]

[image: image1.jpg]

In the middle 80’s new, more powerful computers appeared on the market. Of course, they were more expensive, but the main function for them was using in video processing, so some new interesting effects appeared. At that time the first 3d graphics appeared.
As you can see, it was very simple, but it was a real 3d, and you can move the object without delays of image output (because it runs fast). Many others used professional software to make a realistic looking videos and models of objects, and used a pre-rendered video in their productions.
Another interesting effect of that time was a moving tunnel, which looks like a 3d tunnel, but is a result of a 2d trick. To put it simply we are just projecting a texture to the center of the image.
Take a look:

[image: image6.jpg]\\\\\\\\\‘.

i

m\\\\\\\\

L\\\\\k\

.\\\\\&\\\«

It looks like a building with infinite height! (This image is also made by me.)
(a bit of computer history)

In the end of the 80’s IBM PC computers became leading at the market, and all talented people started making programs on PC. Old computers were sometimes cheaper and well-made, but weren’t able to be upgraded. My opinion is that nowadays Amiga computers (the best computers in the 80’s) will be more powerful, cheaper than PC. Also, they were well-made without any viruses in operating system. However, Commodore Corporation, who built these computers, was bankrupted.
Soon, 2-dimensional graphics became out of fashion, and 3d effects and graphics appeared in games, demos, software and television.
The 90’s made a huge leap in the level of computer graphics. Although, in the early 90’s, all computers couldn’t made a real 3d. The 3d was also a trick – called 2.5d. Almost all walls in the games of the 90’s had the same height. The method of making such a 3d effect was called ray-tracing.
The world in Wolfenstein 3-D is built from a square based grid of uniform height walls meeting solid colored floors and ceilings. In order to draw the world, a single ray is traced for every column of screen pixels and a vertical slice of wall texture is selected and scaled according to where in the world the ray hits a wall and how far it travels before doing so.
[image: image7.png]i

TR
[ome [ymuER S5 2

 [image: image8.png]

In the end of the 90’s a 3d graphic became real. It was looking not realistic, but it was looking just unbelievable!
Half-Life computer game

[image: image9.png]

At that time an interesting effect in 3d appeared. Without it we can’t imagine modern 3d-graphics.

It’s called particle-systems.

Typically a particle system's position and motion in 3D space are controlled by what is referred to as an emitter. The emitter acts as a source of the particles, and its location in 3D space determines where they are generated and whence they proceed. A regular 3D mesh object, such as a cube or a plane, can be used as an emitter. The emitter has attached a set of particle behavior parameters to it.
[image: image10.png]

 [image: image11.png]

Modern effects
Modern effects are the effects that make an in-game image more realistic. Many of them appear at some game development conferences. The most important thing referred with graphics now is lighting.
Lighting is one of the most important and influential elements in environments. It has the power to make or break the visuals, theme and atmosphere. The first lighting types in games were vertex lighting and light mapping. The first made only per-vertex computations (making lighting dynamic), other had lighting in an image. All modern effects can be referred to lighting effects.
Bump mapping
The textures in 3d programs are always flat, and the geometry of a surface is not very complex.
To make it have details, we need to use bump mapping – a relief mapping.
The bump mapping effect is achieved with a modification of a surface lighting – making it shade different levels of surface. Bump mapping uses grey textures containing the level of a surface. A very similar effect, normal mapping, just differs in having another data in an image.
The result makes a detailed lighting of object, simulating an effect of bump.

You can see this effect below:

[image: image12.png]

Specular mapping

This effect also modulates the lighting. It changes the reflectivity of a surface.
Each surface can reflect light – you can see it in a real world. In games, a more approximately model of a specular is used – specular highlights. Specular mapping uses a texture (called specular map) and multiplies the specular highlights of the object to a value taking from the texture. Specularity can be affected by a normal map.

[image: image13.png]

Cube mapping
This is a reflection effect. To explain this effect, first of all I should explain what a cube map is.

It’s a texture, but having 6 faces – like a cube. It can handle a panorama of everything at some point of a (a real or game) world. You can make a cube map in the following algorithm: make 6 photos of 6 directions with a camera having 90° field of view.
To use it in 3d, you must have a vector which starts in a center of cube and shows a direction. This vector can be used to give you a pixel. If you place a cube map on a model, and set the environment of your 3d model to a cube map environment, you will see that the model has a reflection on it. This effect appeared in games approximately in 2003.

[image: image14.png]

Volumetric lighting

Volumetric lighting is a technique used in 3D computer graphics to add lighting effects to a rendered scene. It allows the viewer to see the beams of light shining through the environment; seeing sunbeams streaming through an open window is an example of volumetric lighting, also known as crepuscular rays. The term seems to have been introduced from cinematography and is now widely applied to 3D modeling and rendering especially in the field of 3D gaming.

In volumetric lighting, the light cone emitted by the light source is modeled as a transparent object and considered as a container of a "volume": as a result, light has the capability to give the effect of passing through an actual three dimensional medium (such as fog, dust, smoke, or steam) that is inside its volume, just like in the real world.
[image: image15.png]

[image: image16.png]

Deferred shading

It’s the most interesting and modern lighting type. It can handle an unlimited count of dynamic lights! The techniques is increasingly being used in video games because of the control it enables in terms of using a large amount of dynamic lights and reducing the complexity of required shader program instructions.
Deferred shading is a three dimensional shading technique in which the result of a shading algorithm is calculated by dividing it into smaller parts that are written to intermediate buffer storage (called G-buffer) to be combined later. The main advantage of this effect is of course, an ability to use many lights. Although, Deferred Shading has several disadvantages:
· Difficult implementation

· It works very slowly
· Doesn’t support transparent objects

· Doesn’t support anti-aliasing

Step-by-step making of a final image using deferred shading:

[image: image17.png]

 [image: image18.png]

[image: image19.png]

[image: image20.png]

Diffuse

 G-Buffer

 Normal

 Final
The history of deferred shading
The idea of deferred shading was originally introduced by Michael Deering and his colleagues in a paper published in 1988 entitled The triangle processor and normal vector shader: a VLSI system for high performance graphics. Although the paper never uses the word "deferred", a key concept is introduced; each pixel is shaded only once after depth resolution. Deferred shading as we know it today, using G-buffers, was introduced in a paper by Saito and Takahashi in 1990, although they do not use the word "deferred" either. Around 2004 implementations on commodity graphics hardware started to appear. The technique later gained popularity for applications such as video games, finally becoming the main stream around 2008 to 2010.
Screen Space Ambient Occlusion
Screen Space Ambient Occlusion (SSAO) is a rendering technique for efficiently approximating the well-known computer graphics ambient occlusion effect in real time. It was developed by Vladimir Kajalin while working at Crytek and was used for the first time in a video game in the 2007 PC game Crysis made by Crytek.

First, let’s explain what a basic ambient occlusion is. It’s an approximation for a global lighting method, giving nice lighting. A Screen Space Occlusion means a drawn after all scene, on a screen of a computer.

[image: image21.png]

Compared to other ambient occlusion solutions, SSAO has the following advantages:

· Independent from scene complexity.

· No data pre-processing needed, no loading time and no memory allocations in system memory.

· Works with dynamic scenes.

· Works in the same consistent way for every pixel on the screen.

· No CPU usage – it can be executed completely on the GPU.

· May be easily integrated into any modern graphics pipeline.

Of course, it has its disadvantages, as well:

· Rather local and in many cases view-dependent, as it is dependent on adjacent texel depths which may be generated by any geometry whatsoever.

· Hard to correctly smooth/blur out the noise without interfering with depth discontinuities, such as object edges (the occlusion should not "bleed" onto objects).

Conclusion
All effects make computer graphics more attractive. They can be drawn in 2 and 3 dimensions. The modern effects make a realistic lighting, while old school effects are made just for fun. The modern effects such as Normal, Specular and Cube mapping are extremely popular nowadays. Computer games and demos are making our life more versatile and enhanced. Most of modern computer games are so realistic and attractive that people prefer games to the cinema.
People like watching something unusual because our life is sometimes boring, and, for example, you don’t need to be a train driver to drive trains – you can just play the game.

References
1. http://www.permadi.com/tutorial/raycast/
2. http://demo-effects.sourceforge.net/
3. Wolfenstein 3d

4. Half-Life

5. http://lodev.org/cgtutor

6. http://www.pygame.org/pcr/numpy_plasma/plasma.png
7. http://www.pda-fx.net/content/pno/plasmaeffect/plasma_effect_02.jpg

8. http://www.dotsphinx.com/media/software/demo3d/img/scrshot.gif
9. http://en.wikipedia.org/wiki/Particle_system
10. Crysis

11. http://www.moddb.com/tutorials/lighting-in-game-environments-the-hows-and-whys
12. http://www.3dkingdoms.com/nmap.jpg
13. http://gl.ict.usc.edu/Research/FaceScanning/images/EGSR2007_SGI_faces.png
14. http://www.awingsoft.com/Manual/cubemap/basic.jpg
15. http://en.wikipedia.org/wiki/Volumetric_lighting
16. http://en.wikipedia.org/wiki/Deferred_shading
17. http://en.wikipedia.org/wiki/Screen_Space_Ambient_Occlusion
